

Page 1

INTRODUCTION

In this tutorial, we will continue your introduction to

Autodesk® Inventor® iLogic 2009. This is the second of

three tutorials to help you become familiar with iLogic

and some of the common features that you will be using.

This tutorial expands upon the information presented in

the Basic Tutorial. If you are new to iLogic and haven’t

gone through that, we recommend that you take the time

to do that before you go through this one.

In this tutorial we will be adding rules to a parametric

part. Inventor iLogic provides you with the ability to write

rules that can drive the parameters, features, attributes,

iProperties, and other elements in an Inventor model. The

rules are stored within the part or assembly document. Rules are written in a language that is a

slightly modified version of Visual Basic .Net (VB.Net). It is easy to get started in this language

and to learn more advanced features if needed. In the next tutorial you will learn how to add

rules at an assembly level to affect Inventor parts and iParts. In the course of these tutorials,

you will be provided with 3D parametric models to add rules to.

The skills you will learn include:

 Using the iLogic parameter interface

 Adding a rule

 Writing a rule

 Running a rule

 Editing a rule

 Editing the iLogic Tree

 Read data from an embedded spreadsheet

 Setting feature and component activity

Page 2

OPEN A PART DOCUMENT

First, make sure that the “iLogic 2009 Tutorials” project is active. This will provide easier access

to the relevant files, and will support the work in the next tutorial.

Now that the project is set, open Manifold_Block_no_rules.ipt. This is the part that model rules

will be added to throughout this tutorial.

To avoid making changes to this file, so you can easily get back to the original, first save this

file as a new part file, named manifold_block.ipt. Use the File -> Save As command to save the

file.

You should now have the manifold_block.ipt file open in Inventor:

Page 3

INTRODUCTION TO THE SAMPLE MODEL

The model that we will work with throughout this tutorial is a simple manifold block. This block

contains a set of 3 available ports. These ports are referred to as “A”, “B”, and “C”. Each port is

on a different side of a simple block. Each port consists of a center hole (of variable size), and a

set of surrounding threaded bolt holes, which will be used to mount union caps in a later

tutorial.

This manifold block is capable of being either a “tee”-style block, which has all 3 ports, or an

“elbow”-style block, with only 2 ports. Also, we can either create a standard block, which we

could order off the shelf, or a custom block, which we would manufacture ourselves. A standard

block uses the same size for each of its ports, whereas a custom block can have different sizes

for each of the ports.

Finally, the part contains an embedded Microsoft Excel spreadsheet, which is used to specify

the values for various parameters as the port sizes are changed.

Now, let’s start adding additional parameters to the model to support the rules well write later.

Page 4

CREATE ILOGIC PARAMETERS

Open the iLogic Parameter Editor, using the Parameters button on the iLogic panel bar or

toolbar.

Most of the parameters have been named in the parameter editor already. It is good practice to

name your parameters for future reference when creating a parametric design. Parameters with

meaningful names make the rules that drive or reference them easier to read and understand.

Keep in mind that parameter names in iLogic are case sensitive. Please be sure to follow the

case being used in the parameter editor, and while creating rules.

CREATE PORT SIZE PARAMETERS

First, we need a set of parameters to control the size of 3 ports on our manifold block.

To begin, create a new iLogic parameter named “port_a_size”. Set its Unit value to “in”. Give it

an initial equation of “0.50”. Make it a multi-value list, with the values:

0.50

0.75

1.00

1.25

1.50

2.00

2.50

3.00

If you need more details on the exact steps needed to create a new iLogic parameter, please

revisit the Basic Tutorial. It covers these steps in greater detail. Remember that you can cut and

paste the values above to set the values for the multi-value list.

Finally, make port_a_size a key parameter.

Page 5

Create two more parameters, named port_b_size and port_c_size with the same settings and

multi-value lists. Set both of these as Key parameters. You should now have the following key

parameters:

CREATE BLOCK AND COMPONENT TYPE PARAMETERS

Now, we need to create two more parameters, which will control whether we are modeling a

“tee” block or an “elbow” block, and also whether we are creating a standard or a custom block.

First, create a new parameter named “block”. Make this be a String type parameter. Make it a

multi-value parameter, with the values:

tee

elbow

Set the current value to be “tee”, and make this a key parameter.

Create a second parameter, named “component_type”. Make this a String parameter also, and

make it a multi-value parameter, with the values:

standard

custom

Set the current value to be “standard”, and make this a key parameter.

Page 6

Now, you should have the following key parameters:

Click Done at this point to exit the iLogic Parameter Editor.

SAVE THE INVENTOR PART DOCUMENT

This would be a good time to save your document, before we move on to creating rules.

Page 7

DEFINE THE RULES OF THE MODEL

Now, we define a set of rules that will drive the geometry of the model based on the values of

the key parameters we defined above. In this section, we will construct each rule in segments.

The entire text of all of the rules can be found in the appendix at the end of the document for

easy review later.

ADDING A RULE TO CONTROL PORT VISIBILITY

The first rule we need to add will make model changes to the Port B features, based on whether

the user wants an “elbow” or a “tee” block. This will involve suppressing or enabling the Port B-

related features, based on the value of the block parameter.

Create a new rule named “block_shape_rule”. Recall that you add a new rule using the

“Add Rule” button on the iLogic panel bar or toolbar:

ILOGIC RULE EDITOR

Once you’ve specified the new rule name in the Rule Name dialog, the iLogic Rule Editor dialog

will be displayed.

Recall that, in the rule editor, you can use parameter names from the model as variables in your

rule. Also, you can select from lists of the available parameters, as well as features and other

model entities, for inclusion in your rule.

The first part of your new rule will handle the case where the block is a “tee”-style block.

If block = "tee" Then

Recall that for a tee-style block, all 3 ports will be active. In case Port B was previously disabled,

we add the steps to (re)enable it, which involves activating two features in the part:

Feature.IsActive("Port_B") = True
Feature.IsActive("Port_B_Threads") = True

Reminder: The Feature.IsActive function is available for selection on the Rule Syntax tab, in the

Component/Feature function category. You can access the names of the available features on

the Features tab of the rule editor.

We have now defined the behavior that we wish our model to take when block = "tee". Now we

will define the model behavior when the block = "elbow":

ElseIf block = "elbow" Then

Page 8

When we’re creating an elbow block, we want to suppress the Port B-related features. Since this

is simply the opposite of what we did for a “tee” block, we use the same function, but with

opposite values:

Feature.IsActive("Port_B") = False
Feature.IsActive("Port_B_Threads") = False

The easiest way to add these lines is to copy and paste the text from above, and then change

“True” to “False” in the new lines.

This is all we need to do for the block = “elbow” case, so we can end the If block:

End If

That’s it! You’ve now included all of the instructions necessary to enable or disable the Port B-

related features based on the type of block to be used. If you haven’t already done so, click OK

in the rule editor dialog to save the completed rule.

Page 9

TEST THE RULE (BLOCK_SHAPE_RULE)

To verify this rule is really in control of our model. Now, open the iLogic Parameter Editor. In

the “block” row, change tee to elbow using the Multi-value selection box.

Page 10

MANAGING PART CONFIGURATIONS

We will now cover the last two topics listed in the beginning of this tutorial:

 Read data from an embedded spreadsheet

 Set feature and component activity

Now we will write a rule that uses values from the embedded Excel spreadsheet to set the

values for parameters that control the port geometry, based on a specified size. We will look up

the port size in the spreadsheet to identify the row of values that we want, and then read fields

from that row to get the parameter values to use.

Go to the iLogic Parameter Editor and change the block parameter from elbow back to tee.

When we have a Tee style block, there are three ports. Each port is listed in the iLogic

parameter editor, but changing the port size in the parameter editor will not change the port

size in our model. We have to add rules to drive the different port sizes.

ADD PORT_SIZE_RULE

Our first step will be to add a rule that will set the size of the

ports and the dimensions of the screw pattern around each port.

The screw pattern will be used in the assembly to hold a flange

onto the block.

Add a rule named “port_size_rule”. Click OK. The rule editor will

appear.

iLogic provides built-in functions that read information from Excel spreadsheets. These

functions are available on the Rule Syntax tab, under the Data Links function category.

To access the embedded spreadsheet, go to the Inventor model browser, and expand the “3rd

Party” item in the tree. Right-click on the “Embedding 1” entry, and choose “Edit”. The

spreadsheet looks like this:

Page 11

The first thing we need to do is to locate the row that contains the values to be used for Port A.

We look up the value matching the port_a_size parameter in a column named “port_size”. The

function to use is labeled i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1",

"columnName", "<=", 0.2, "columnName", "<=", 4.1) in the rule editor. Once you have inserted

this function template into your rule, replace “columnName” with “port_size”, “<=” with “=”, and

0.2 with port_size.

i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1", "port_size", "=", port_a_size)

This indicates that we want to find the row in the embedded spreadsheet that has a port_size

column that equals the value of the port_a_size parameter.

Now, we want to set a series of parameters based on the values of cells from this row in the

spreadsheet. These parameters will control the port diameter, drill depth, and the distance

between the bolt holes. Use the function labeled “= GoExcel.CurrentRowValue("columnName")”.

port_a_y_dist_between_screw = GoExcel.CurrentRowValue("y_dist_between_screw")
port_a_x_dist_between_screw = GoExcel.CurrentRowValue("x_dist_between_screw")
port_a_port_dia = GoExcel.CurrentRowValue("port_dia")
Port_A_Drill_Depth = GoExcel.CurrentRowValue("tap_drill_depth")

Remember that you can use the items in the Parameters tab of the rule editor to access various

sets of parameters in the model. The ones used above are all Model parameters.

We have one more line of code to add for this part of the rule. This line of code will define the

thread of the tapped holes. Under Categories, click on Component/Feature. Near the bottom of

the list of functions, choose Feature.ThreadDesignation(“featurename”)= “3/8-16 UNC”. We will

replace the feature name with “Port_A_Threads”, and will use another value from the

spreadsheet row for its value.

Feature.ThreadDesignation("Port_A_Threads") = GoExcel.CurrentRowValue("tap_dim")

Page 12

Here, we have indicated that we should use the tap_dim cell to get the thread designation for

the bolt holes.

Now you’ve completed the instructions to set the parameters related to Port A. Since we have

three ports, we will now copy the rule text that we have created thus far and paste it two more

times. For the second grouping of code, change port_a text to be port_b. For the third

grouping, change port_a to be port_c.

The additional rule lines should look like this:

i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1", "port_size", "=", port_b_size)
port_b_y_dist_between_screw = GoExcel.CurrentRowValue("y_dist_between_screw")
port_b_x_dist_between_screw = GoExcel.CurrentRowValue("x_dist_between_screw")
port_b_port_dia = GoExcel.CurrentRowValue("port_dia")
Port_B_Drill_Depth = GoExcel.CurrentRowValue("tap_drill_depth")
Feature.ThreadDesignation("Port_B_Threads") = GoExcel.CurrentRowValue("tap_dim")

i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1", "port_size", "=", port_c_size)
port_c_y_dist_between_screw = GoExcel.CurrentRowValue("y_dist_between_screw")
port_c_x_dist_between_screw = GoExcel.CurrentRowValue("x_dist_between_screw")
port_c_port_dia = GoExcel.CurrentRowValue("port_dia")
Port_C_Drill_Depth = GoExcel.CurrentRowValue("tap_drill_depth")
Feature.ThreadDesignation("Port_C_Threads") = GoExcel.CurrentRowValue("tap_dim")

That’s all we need to set up the port geometry. Click OK in the iLogic rule editor to save your

port_size_rule. Your model may or may not update at this point depending upon how the iLogic

port size parameters were initially set.

Page 13

TEST THE RULE (PORT_SIZE_RULE)

Activate the iLogic Parameter Editor to see how our new rule will update the model when

parameter values are changed. Change port_a_size to 1.50 by selecting from the multi-value

list. When you click in another column (e.g., Driving Rule) or hit the Tab key, the parameter

equation change will be made, and the port_size_rule will run. This will apply the changes to

the parameters specified in the rule.

Notice how the model changes as you set this or other values. Using the value 1.50, your model

should look something like this:

Clearly, we have some more work to do to get other aspects of the model (e.g., its size) to

update according to the selected port size.

Page 14

THE BLOCK_SIZE RULE

Now that we can change the size of each port, we will need to decide which face has the largest

port so that the block can be sized appropriately. This will require another rule.

ADD THE RULE

Add a new rule named “block_size”. Proceed to the rule editor.

First, we need to figure out which port is the largest. To do this, we examine the values of the

three port size parameters, and hold onto the value of the largest one. As we did for the

block_shape_rule, we will need to have different behavior for tee-style vs. elbow-style blocks.

For tee-style blocks, all three ports will be used, so we need to check the sizes for all of them.

For elbow-style blocks, we are not interested in the size of Port B, since it will be suppressed.

We use the MaxOfMany function to get the largest value out of a set of input values. We use the

appropriate set of input values for each case. This function is available from the Math category

on the Rule Syntax tab.

If block = "tee" Then
port = MaxOfMany(port_a_size,port_b_size,port_c_size)
ElseIf block = "elbow" Then
port = MaxOfMany(port_a_size,port_c_size)
End If

Notice that we’ve used a new “local variable” named “port” to hold the size of the largest

available port. Now we have to tell the model what to do with this information. This model is

getting its information from an embedded Excel spreadsheet. We will need to look at the

spreadsheet to update the overall sizes of this model.

Press Enter twice to add some white space in the rule.

As with the previous rule, we will use information from the embedded spreadsheet to get the

values for other parameters. We first need to locate the row of information in the embedded

spreadsheet.

i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1", "port_size", "=", port)

Here, we’re again using the port_size column for the lookup, and using the value of the variable

assigned above as the value to look for.

Page 15

We will now set some model parameters with information from the embedded Excel

spreadsheet, using the row we found for the largest port size.

block_depth = GoExcel.CurrentRowValue("block_depth")
port_c_depth_from_front = GoExcel.CurrentRowValue("port_c_depth_from_front")
block_width = GoExcel.CurrentRowValue("block_width")
port_a_hor_offset = GoExcel.CurrentRowValue("hor_offset")
port_b_hor_offset = GoExcel.CurrentRowValue("hor_offset")
port_c_hor_offset = GoExcel.CurrentRowValue("hor_offset")

So far we have figured out which port is the largest, and we are sizing the top of the block

according to these sizes. We will examine the tee and elbow to determine which port size is

bigger on the port a / port b face to determine height of the block.

For this, we will use another local variable, “porta”, to hold onto this value. Again, since Port B is

not used for elbow-style blocks, we have different steps depending on this setting.

If block = "tee" Then
porta = MaxOfMany(port_a_size, port_b_size)
ElseIf block = "elbow"
porta = port_a_size
End If

Notice that, for elbow-style blocks, we don’t use the MaxOfMany function, since there’s only

one value to consider. We can just set the variable from that value.

Now we need to tell the model where to get the values for the height of the block. We will go to

the Excel spreadsheet again to get this information.

i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1", "port_size", "=", porta)

Here, we find the correct row to use, based on the local variable we just set. We will now set the

height of our block.

port_a_vert_offset = GoExcel.CurrentRowValue("vert_offset")
port_b_vert_offset = GoExcel.CurrentRowValue("vert_offset")

Almost finished. We need to set the value for two additional parameters. One of these will set

the block height. The other will set the vertical offset of Port C. For this value, we have some

special logic, which adds some extra space beyond the vertical offset used for the other ports.

We get this from another spreadsheet cell. Note that we only do this for elbow-style blocks.

If block = "elbow" Then
port_c_vert_offset = GoExcel.CurrentRowValue("vert_offset") + (GoExcel.CurrentRowValue("port_dia")/4)
Else
port_c_vert_offset = GoExcel.CurrentRowValue("vert_offset")
End If
block_height = GoExcel.CurrentRowValue("block_height")

This finishes up the block_size_rule rule. Click OK in the iLogic Rule Editor to see the effect of

this rule. Change any of the port sizes in the iLogic Parameter Editor and see the model update.

Page 16

SETTING THE COMPONENT TYPE

This next rule could have been created first, but we have left it until the end in order to show

how rules can be re-ordered after they are created.

Create a new rule named “component_type_rule”, and open the rule editor.

This rule is very simple: for standard components, we want to make sure that all port sizes are

the same. We do this by setting the sizes for ports B and C to be the same as Port A.

If component_type = "standard" Then
port_b_size = port_a_size
port_c_size = port_a_size
End If

Click OK when you are done to save this rule.

REORDERING RULES

The order of rule execution sometimes affects the results of these rules. You can alter the order

of execution from the iLogic Tree Editor.

You can also switch to the iLogic browser panel to view the tree of iLogic rules and parameters.

The iLogic Tree Editor dialog box will be displayed. Left-click on the component_type rule that

we just created. Drag and drop this rule above the block_shape_rule.

Click OK when you are done. You might notice that the inventor Update icon is active. Click on

it to update the model.

Page 17

“DRIVING” RULES

Activate the iLogic Parameter Editor dialog.

Notice the Driving Rule column value for port_b_size and port_c_size parameters. These column

values indicate that there is a driving rule (component_type) in place for these two parameters.

When component_type equals “standard”, these two port sizes are set automatically by the rule

to be equal to port_a_size. Attempts to change these port values while component_type is

equal to “standard” will fail, as the rule fires and controls these values. Notice that after

changing component_type to “custom”, you are free to choose independent values for

port_b_size and port_c_size.

Try it. Change component type from standard to custom. Now change port_b_size to 3 inch and

port_c_size to be .75 inch. Notice that independent port sizes are possible. Change your

component type back to standard. What happed to your model? All of the ports should have

updated to match port_a_size.

Page 18

UPDATING IPROPERTIES

Let’s add one more rule. This rule will update some of the iProperties of the manifold block

part. Add a new rule named “part_number_rule”. This rule will set the Inventor Part Number

iProperty value.

For standard components, we can look up the Part Number in the embedded spreadsheet.

Then, we use the value in the “model_code” cell to set the Part Number property for the part. To

make it easy to do this, iLogic provides the iProperties.Value function, in the iProperties

category on the Rule Syntax tab.

As with earlier rules, we first need to locate the row in the embedded spreadsheet to read

values from. We locate the row using port_a_size.

If component_type = "standard" Then
i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1", "port_size", "=", port_a_size)
iProperties.Value("Project", "Part Number") = GoExcel.CurrentRowValue("model_code")

For custom components, we just used a fixed string for the part number, so we don’t need to

use any information from the spreadsheet.

Else
iProperties.Value("Project", "Part Number") = "HomeMade"
End If

Click OK on the Rule Editor to close this rule.

Page 19

TEST THE RULE (PART_NUMBER_RULE)

To verify that the new rule is working, click on File from the Inventor pull down menu. Click on

iProperties. The iProperties dialog box will appear. Click on the Project tab. Text is entered next

to the Part Number.

Click Close to close this dialog box.

Go to the iLogic Parameter Editor and change component from standard to custom. Click OK

are reopen the Inventor iPorperties dialog box. You will notice that the Part Number has

updated to be “HomeMade”.

Page 20

CONGRATULATIONS!

You have covered a lot of new ground in this tutorial. You now understand some of the basic

iLogic methods for turning a parametric single model into an intelligent super model!

In this tutorial you have:

 Used the iLogic parameter interface

 Added a rule

 Written a rule

 Caused a rule to run

 Edited a rule

 Edited the iLogic Tree

 Read data from an embedded spreadsheet

 Set feature and component activity

 Set iProperty values from a rule

Save your work. We will be using this model in the next tutorial to build an assembly and add

logic at the assembly level.

Page 21

APPENDIX – COMPLETE RULE TEXT

The following sections contain the complete text of all of the rules presented in this tutorial.

These rules are also available in completed form in the manifold_block_complete.ipt file,

included in the tutorials directory.

BLOCK_SHAPE_RULE

If block = "tee" Then
Feature.IsActive("Port_B") = True
Feature.IsActive("Port_B_Threads") = True
ElseIf block = "elbow" Then
Feature.IsActive("Port_B") = False
Feature.IsActive("Port_B_Threads") = False
End If

PORT_SIZE_RULE

i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1", "port_size", "=", port_a_size)
port_a_y_dist_between_screw = GoExcel.CurrentRowValue("y_dist_between_screw")
port_a_x_dist_between_screw = GoExcel.CurrentRowValue("x_dist_between_screw")
port_a_port_dia = GoExcel.CurrentRowValue("port_dia")
Port_A_Drill_Depth = GoExcel.CurrentRowValue("tap_drill_depth")
Feature.ThreadDesignation("Port_A_Threads") = GoExcel.CurrentRowValue("tap_dim")

i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1", "port_size", "=", port_b_size)
port_b_y_dist_between_screw = GoExcel.CurrentRowValue("y_dist_between_screw")
port_b_x_dist_between_screw = GoExcel.CurrentRowValue("x_dist_between_screw")
port_b_port_dia = GoExcel.CurrentRowValue("port_dia")
Port_B_Drill_Depth = GoExcel.CurrentRowValue("tap_drill_depth")
Feature.ThreadDesignation("Port_B_Threads") = GoExcel.CurrentRowValue("tap_dim")

i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1", "port_size", "=", port_c_size)
port_c_y_dist_between_screw = GoExcel.CurrentRowValue("y_dist_between_screw")
port_c_x_dist_between_screw = GoExcel.CurrentRowValue("x_dist_between_screw")
port_c_port_dia = GoExcel.CurrentRowValue("port_dia")
Port_C_Drill_Depth = GoExcel.CurrentRowValue("tap_drill_depth")
Feature.ThreadDesignation("Port_C_Threads") = GoExcel.CurrentRowValue("tap_dim")

Page 22

BLOCK_SIZE_RULE

If block = "tee" Then
port = MaxOfMany(port_a_size,port_b_size,port_c_size)
ElseIf block = "elbow" Then
port = MaxOfMany(port_a_size,port_c_size)
End If

i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1", "port_size", "=", port)
block_depth = GoExcel.CurrentRowValue("block_depth")
port_c_depth_from_front = GoExcel.CurrentRowValue("port_c_depth_from_front")
block_width = GoExcel.CurrentRowValue("block_width")
port_a_hor_offset = GoExcel.CurrentRowValue("hor_offset")
port_b_hor_offset = GoExcel.CurrentRowValue("hor_offset")
port_c_hor_offset = GoExcel.CurrentRowValue("hor_offset")

If block = "tee" Then
porta = MaxOfMany(port_a_size, port_b_size)
ElseIf block = "elbow"
porta = port_a_size
End If

i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1", "port_size", "=", porta)
port_a_vert_offset = GoExcel.CurrentRowValue("vert_offset")
port_b_vert_offset = GoExcel.CurrentRowValue("vert_offset")

If block = "elbow" Then
port_c_vert_offset = GoExcel.CurrentRowValue("vert_offset") + (GoExcel.CurrentRowValue("port_dia")/4)
Else
port_c_vert_offset = GoExcel.CurrentRowValue("vert_offset")
End If
block_height = GoExcel.CurrentRowValue("block_height")

COMPONENT_TYPE_RULE

If component_type = "standard" Then
port_b_size = port_a_size
port_c_size = port_a_size
End If

PART_NUMBER_RULE

If component_type = "standard" Then
i = GoExcel.FindRow("3rd Party:Embedding 1", "Sheet1", "port_size", "=", port_a_size)
iProperties.Value("Project", "Part Number") = GoExcel.CurrentRowValue("model_code")
Else
iProperties.Value("Project", "Part Number") = "HomeMade"
End If

Page 23

Autodesk, AutoCAD, Autodesk Inventor, and Inventor are either registered trademarks or

trademarks of Autodesk, Inc., in the USA and/or other countries. All other brand names, product

names, or trademarks belong to their respective holders. Autodesk reserves the right to alter

product offerings and specifications at any time without notice, and is not responsible for

typographical or graphical errors that may appear in this document.

© 2009 Autodesk, Inc. All rights reserved.

